تخمین پارامترهای آبخوان با استفاده از نتایج آزمایش پمپاژ بوسیله شبکه های عصبی مصنوعی مختلف

پایان نامه
چکیده

شبکه های عصبی مصنوعی به طور فزاینده ای برای پیش بینی پارامترها و مدیریت بهینه منابع آب در حال استفاده هستند. یکی از دلائل گرایش به این شبکه ها رفتار غیرخطی و پیچیده پارامترهای منابع آب سطحی و زیرزمینی از یکطرف و قابلیت انعطاف پذیری بالای شبکه های عصبی مصنوعی در حل اینگونه مسائل از طرف دیگر می باشد. در اکثر مقالات کار شده در این مورد استفاده از شبکه عصبی مصنوعی feedforward با الگوریتم آموزش پس انتشار مورد بررسی قرار گرفته است. در این مقاله سعی شده است از سایر شبکه های عصبی مانند شبکه های شعاع مبنا و بازگشتی جهت تخمین پارامترهای هیدرولیکی آبخوان استفاده کرده و نتایج حاصل از آن را با داده های مشاهداتی واقعی و همچنین عملکرد شبکه feedforward مقایسه نموده و کارایی شبکه های فوق را مورد مقایسه و بررسی قرار دهیم. همچنین تاثیر تغییر الگوریتم پس انتشار و استفاده از سایر الگوریتم های موجود نیز مورد بررسی و مقایسه قرار گرفته اند. در نهایت داده ها توسط تکنیک تحلیل مولفه های اصلی کاهش بعد داده شده و روند آموزش و صحت سنجی تکرار می گردد. نتایج بدست آمده بیانگر آنست که شبکه های مختلف عصبی مصنوعی و الگوریتم های مورد استفاده همگی تخمین های قابل قبولی از پارامتر های مورد نظر داشته اند و لیکن هرکدام محدودیت هایی که لازمه خصوصیات ذاتی آنهاست نیز بروز داده اند. همچنین تکنیک تحلیل مولفه های اصلی، زمان آموزش شبکه را به مقدار قابل ملاحظه ای کاهش می دهد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تخمین انرژی شکست بتن با استفاده از شبکه عصبی مصنوعی

بتن یکی از رایج‏ترین مصالح صنعتی و ساختمانی است که به دلیل اقتصادی بودن اهمیت روز افزونی پیدا می‏کند. در سال‏های اخیر با بهره‏گیری از روش‏های مختلف آزمایشگاهی، پارامتر‏های شکست مواد سیمانی مانند بتن مورد بررسی قرار گرفته است؛ نقش این پارامتر‏ها در طراحی سازه‏های سطحی و زیر‏سطحی از اهمیت ویژه‏ای برخوردار است. در این مقاله مدل شکست بر ‏اساس شبکه عصبی برای تخمین پارامترشکست بتن  GF(انرژی مخصوص شکس...

متن کامل

تخمین پارامترهای شتاب، سرعت و جابجایی ماکزیمم زمین با استفاده از شبکه عصبی مصنوعی

به منظور انجام تحلیل‏های دینامیکی و همچنین تعیین میزان خطرپذیری در هر منطقه بایستی بتوان پارامترهای زمین‌لرزه‌ احتمالی آن منطقه را تخمین زد. در این مقاله تلاش خواهد شد با استفاده از شبکه عصبی مصنوعی مقادیر شتاب، سرعت و جابجایی ماکزیمم زمین تخمین زده شود. بدین منظور از شبکه‏ها‏ی عصبی به عنوان یکی از روش‏ها و تکنیک‏های کاربردی هوش مصنوعی در ارائه یک روش محاسباتی ساده‏تر برای حذف تردیدها و عدم قطع...

متن کامل

تخمین سختی برشی شکست ( ) با استفاده از شبکه عصبی مصنوعی

    در سال‌های اخیر با بهره‌گیری از روش‌های مختلف آزمایشگاهی، چگونگی مد برشی شکست با استفاده از نمونه‌های سنگی مورد بررسی قرار گرفته است. اغلب گسیختگی‌های رخ داده در طبیعت در اثر عملکرد نیروهای کششی و برشی در توده سنگ می‌باشد. تعیین دقیق سختی برشی شکست برای درک و تحلیل رفتار گسیختگی‌ها در حفریات سطحی و زیرزمینی از اهمیت ویژه‌ای برخوردار می‌باشد. بررسی جامع دستاوردهای علمی‌در خصوص تعیین سختی برش...

متن کامل

تخمین استحکام فشاری ماسه ریخته‌گری در مقادیر مختلف رطوبت با استفاده از شبکه عصبی مصنوعی

کیفیت قطعات ریخته‌گری درقالب‌گیری ماسه به‌طور چشم‌گیری به خواص ماسه‌ی مورد استفاده از قبیل استحکام فشاری، نفوذپذیری، سختی قالب و... بستگی دارد که این خواص نیز به پارامترهایی مانند رطوبت، اندازه و شکل دانه ماسه، میزان چسب و... بستگی دارند. در این مقاله، از شبکه عصبی مصنوعی برای بررسی تاثیر میزان رطوبت در استحکام فشاری ماسه استفاده شده است. آزمایش‌های عملی متعددی برای به‌دست آوردن داده‌های مورد ن...

متن کامل

تخمین استحکام فشاری ماسه ریخته‌گری در مقادیر مختلف رطوبت با استفاده از شبکه عصبی مصنوعی

کیفیت قطعات ریخته‌گری درقالب‌گیری ماسه به‌طور چشم‌گیری به خواص ماسه‌ی مورد استفاده از قبیل استحکام فشاری، نفوذپذیری، سختی قالب و... بستگی دارد که این خواص نیز به پارامترهایی مانند رطوبت، اندازه و شکل دانه ماسه، میزان چسب و... بستگی دارند. در این مقاله، از شبکه عصبی مصنوعی برای بررسی تاثیر میزان رطوبت در استحکام فشاری ماسه استفاده شده است. آزمایش‌های عملی متعددی برای به‌دست آوردن داده‌های مورد ن...

متن کامل

تخمین کریپ کمپلینس مخلوط های آسفالتی با استفاده از شبکه های عصبی مصنوعی

یکی از آزمایش‌های اساسی در فرایند طراحی روسازی‌های انعطاف‌پذیر به روش مکانیستیک- تجربی در آشتو 2002، آزمایش کریپ کمپلینس است. در این تحقیق مدلی جدید برای تخمین کریپ کمپلینس مخلوط‌های آسفالتی با استفاده از شبکه‌های عصبی مصنوعی پرسپترون چند لایه، با تکنیک آموزش لونبرگ- مارکوات، با توان تعمیم پذیریR=0.949 ، با موفقیت ارائه شده است. این مدل 14 ورودی شامل درصدهای عبوری انتخابی از منحنی دانه‌بندی ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه شیراز - دانشکده عمران و محیط زیست

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023